A Group-theoretical Generalization of Pascal's Triangle
نویسندگان
چکیده
منابع مشابه
a generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
Group-theoretical generalization of necklace polynomials
Let G be a group, U a subgroup of G of finite index, X a finite alphabet and q an indeterminate. In this paper, we study symmetric polynomials MG(X,U) and M q G(X,U) which were introduced as a group-theoretical generalization of necklace polynomials. Main results are to generalize identities satisfied by necklace polynomials due to Metropolis and Rota in a bijective way, and to express M G(X,U)...
متن کاملOn a Generalization of the Narayana Triangle
By studying various ways of describing the Narayana triangle, we provide a number of generalizations of this triangle and study some of their properties. In some cases, the diagonal sums of these triangles provide examples of Somos-4 sequences via their Hankel transforms.
متن کاملA Generalization of Routh's Triangle Theorem
For a given triangle T and a real number ρ we define Ceva’s triangle Cρ(T ) to be the triangle formed by three cevians each joining a vertex of T to the point which divides the opposite side in the ratio ρ ∶ (1 − ρ). We identify the smallest interval MT ⊂ R such that the family Cρ(T ), ρ ∈ MT , contains all Ceva’s triangles up to similarity. We prove that the composition of operators Cρ, ρ ∈ R,...
متن کاملA GENERALIZATION OF PRIME HYPERIDEALS
Let $R$ be a multiplicative hyperring. In this paper, we introduce and study the concept of n-absorbing hyperideal which is a generalization of prime hyperideal. A proper hyperideal $I$ of $R$ is called an $n$-absorbing hyperideal of $R$ if whenever $alpha_1o...oalpha_{n+1} subseteq I$ for $alpha_1,...,alpha_{n+1} in R$, then there are $n$ of the $alpha_i^,$s whose product ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 1991
ISSN: 0195-6698
DOI: 10.1016/s0195-6698(13)80006-6